成功最有效的方法就是向有经验的人学习!

HBase笔记整理(一)

行列式数据库

行式数据库:

可以简单的理解为类似传统的rdbmspaint这些数据,存放的数据都是结构化的数据。
行式数据库,是有利于全表数据的扫描,不利于只查询个别字段

列式数据库:

对行式数据库的一个改进,将部分列(或者说有关联的一些列)存放到单独的文件中,其他列存在其它多个文件中,
我们在进行查询的时候,只需要读取出这些常用列即可完成工作,这样,减少了文件IO的读写,提高读写的效率(
不用再想行式数据库进行全表扫描,然后过滤相关字段)

在行式数据库里面,大数据领域有一个非常著名的产品——HBase,其有别于传统的RDBMS,被称之为列式数据库,
或者是NoSQL(Not Only SQL,是一类数据库的统称,常见的有Hbase、Redis、mechache、mongodb。。。。)中的一块数据。

能够满足对hdfs上面海量数据的告诉数据读写。

HBase概述

是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,
利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。
HBase利用Hadoop HDFS作为其文件存储系统,利用Hadoop MapReduce来处理HBase中的海量数据,
利用Zookeeper作为协调工具。
特点:

高可靠性
高性能
面向列
可伸缩
    表的特点
        纵向扩展
        横向扩展
    部署上来说:
        分布式集群

HBase设计初衷,是为了企业中的大表,面向上百万列,上百亿条记录设计的数据库。
可以分布式存储海量的数据
具有容错能力强,数据高可靠的特点
HBase是一个列式NoSQL数据库
数据存储的结构是按照列进行存储。按照列进行存储的数据库产品,一般都有行键的概念。
使用行键,可以标示一行数据。理解行键的时候,可以简单的认为是RDBMS中的PK。
Hbase存储数据的物理结构是key-value形式。key就是行键。
同时可以非常方便的进行横向扩展(scale out,纵向扩展scale up)。

HBase安装

安装前需要保证hadoop、zookeeper、java已经安装好。

单机版本

解压   ~]$ tar -zxf /home/uplooking/soft/hbase-1.1.5-bin.tar.gz -C /home/uplooking/app
重命名 ~]$ mv /home/uplooking/app/hbase-1.1.5 /home/uplooking/app/hbase
添加至环境变量 export HBASE_HOME=/home/uplooking/app/hbase
配置 $HBASE_HOME/conf/hbase-env.sh、hbase-site.xml
  $HBASE_HOME/conf/hbase-env.sh
    export JAVA_HOME=/opt/jdk
    export HBASE_MANAGES_ZK=false
  $HBASE_HOME/conf/hbase-site.xml
  <property>
    <name>hbase.rootdir</name>
    <value>hdfs://ns1/hbase</value>
  </property>
  <property>
    <name>hbase.cluster.distributed</name>
    <value>true</value>
  </property>
  <property>
    <name>hbase.zookeeper.quorum</name>
    <value>uplooking01,uplooking02,uplooking03</value>
  </property>
启动
  sh $HBASE_HOME/bin/start-hbase.sh
  使用jps命令,当有HMaster、HQuorumPeer(使用hbase自带的zk)、HRegionServer三个进程启动的时候,说明hbase服务已经启动成功
停止
  sh $HBASE_HOME/bin/stop-hbase.sh
单进程启动
  HMaster hbase-daemon.sh start master
  HRegionserver hbase-daemon.sh start regionserver
访问:
  web http://<ip>:16010
  cli bin/hbase shell

分布式安装

在上述的基础之上,只需要再配置一个conf/regionservers,添加两行内容:
uplooking02
uplooking03
注意:
  如果已经配置过单机版,需要将hbase在hdfs上面的目录、以及hbase在zk中的目录清除,以免和集群版本操作冲突
  zk
    rmr /hbase
  hdfs
    hdfs dfs -rm -R /hbase
拷贝master上面的数据到uplooking02和uplooking03
  scp -r app/hbase uplooking@uplooking02:/home/uplooking/app/
  scp -r app/hbase uplooking@uplooking03:/home/uplooking/app/
同样在slave01和slave02上面添加相关环境变量
  scp ~/.bash_profile uplooking@uplooking02:/home/uplooking/
  scp ~/.bash_profile uplooking@uplooking02:/home/uplooking/
  让其生效
  source ~/.bash_profile
启动hbase集群
  sh $HBASE_HOME/bin/start-hbase.sh
  这个时候在master机器上面,有一个进程HMaster,在uplooking02和uplooking03上面分别有一个HRegionServer

启动HBase出现的问题及解决方案

启动hbase出现如下问题:

Caused by: java.lang.IllegalArgumentException: java.net.UnknownHostException: ns1
    at org.apache.hadoop.security.SecurityUtil.buildTokenService(SecurityUtil.java:373)
    at org.apache.hadoop.hdfs.NameNodeProxies.createNonHAProxy(NameNodeProxies.java:258)
    at org.apache.hadoop.hdfs.NameNodeProxies.createProxy(NameNodeProxies.java:153)
    at org.apache.hadoop.hdfs.DFSClient.<init>(DFSClient.java:602)
    at org.apache.hadoop.hdfs.DFSClient.<init>(DFSClient.java:547)
    at org.apache.hadoop.hdfs.DistributedFileSystem.initialize(DistributedFileSystem.java:139)
    at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2591)
    at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:89)
    at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2625)
    at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2607)
    at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:368)
    at org.apache.hadoop.fs.Path.getFileSystem(Path.java:296)
    at org.apache.hadoop.hbase.util.FSUtils.getRootDir(FSUtils.java:1002)
    at org.apache.hadoop.hbase.regionserver.HRegionServer.<init>(HRegionServer.java:566)
    ... 10 more
Caused by: java.net.UnknownHostException: ns1

解决方案:

第一种方式:
    source一下环境变量文件
第二种方式:
    将hdfs对应的hdfs-site.xml和core-site.xml交给hbase管理

另外需要注意的是,如果原来已经安装了单机版,如果再安装集群版本时,需要把原来相关的数据删除。

HBase体系结构

逻辑结构:

表(table)
      划分数据集合的概念,和传统的db中的表的概念是一样的。

行健(RowKey):
  一行数据的唯一标示,要想操作(read/write)一条数据,必须通过行健,其在hbase底层都是使用字节数组进行存放,
    所以方便我们使用rk进行排序,
   行键是字节数组, 任何字符串都可以作为行键;表中的行根据行键进行排序,数据按照Row key的字节序(byte order)排序存储;
     所有对表的访问都要通过行键 (单个RowKey访问,或RowKey范围访问,或全表扫描)。

列族(columnFamily)
   简单的认为是一系列“列”的集合。列族是以单独的文件进行存储。

列限定符(column Qualifier)
   或者叫列。列里面的数据定位通过列限定符 每个CF可以有一个或多个列成员(ColumnQualifier),
   列成员不需要在表定义时给出,新的列族成员可以随后按需、动态加入。时间戳(version)
   在单元格中可以存放多个版本的数据。

单元格(cell)
   Cell 由行键,列族:限定符,时间戳唯一决定,Cell中的数据是没有类型的,全部以字节码形式存贮,主要用来存储数据。

单元格的图示如下:


物理结构:

HMaster ----->NameNode
  管理节点

HRegionServer----->DataNode
  存放Region的服务器

HRegion
  存放hbase中数据的一个概念,可以简单的理解为表,存放一张表中的一部分数据,当该region中的数据超过一定量的时候,会自动进行分裂,
分裂成两个region(一份为二),从这个角度上而言,Region是对hbase中表的一个横向的划分。

HFile
  在hdfs上存放数据之前的一个物理结构,用于接收从客户端提交过来的数据。  

一个集群中有多个HRegionServer
  |-----一个HLog
  |-----多个HRegion
    |---多个Store
      |----一个CF

HBase操作

CLI(Command Line interface):

使用bin/hbase shell来进入命令终端
命令:
list查看当前命名空间下的所有的表,也可以查看特定命名空间下的表
  list 'ns:abc.*' --->查看命名空间ns下面的所有的以表名以abc开头的表的列表
创建一张表
  create 't1', 'cf1' --->在默认的命名空间下创建一张表名为t1,只有一个列族,列族名为cf1
查看一张表的所有内容:scan
  scan 't1'或者scan 'ns1:t1'
往表中增加一条记录:put
  put 't1', '1'(rowkey), 'cf1:name', 'zhangsan'
查看其中一个具体的值
  get 't1', '1', 'cf1:name'
查看表的属性信息:
  describe/desc 't1'
删除记录:delete
  delete 't1', '1', 'cf1:age' -->删除某一个rowkey对应的cf1:age对应的单元格
  deleteall 't1', '2'     -->删除rowkey=2对应的所有的单元格
删除一张表:
  注意:删除表之前,需要先确认表状态是否为disable,如果不是,需要disable '表名'
  disable 't1'
  drop 't1'

练习:

rk column column      cf
  name  grad        course
                math  art |column
1 Tom   5       97    87
2 Jim   4       89    80
创建表
  create 'stu','name', 'grad','course' --->创建了表stu,有三个列族,name、grad、course
增加数据:
  put 'stu', '1', ':name', 'Tom'    直接写成'name'也是可以的,也就是说name这个列族下面没有多列
  put 'stu', '1', ':grad', '5'
  put 'stu', '1', 'course:art', '97'
  put 'stu', '1', 'course:math', '88'
删除name="Jim"的art成绩
  delete 'stu', '2', 'name', 'Jim', "course:art" --->错误的
  delete 'stu', '2',"course:art" 因为每次操作,只能操作的是单一单元格,hbase的原子性操作是基于单元格的
  而一个单元格的确定是由rk、cf、col、ts(timestamp)
删除name="JIM"所在的行的而所有单元格
  deleteall 'stu', '2'
查看当前表有多少条记录:select count(1) from t;
  count 

HBase的java API操作

package com.uplooking.bigdata.hbase;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.*;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.CompareFilter;
import org.apache.hadoop.hbase.filter.Filter;
import org.apache.hadoop.hbase.filter.FilterList;
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

/**
 * HBase Java API 学习
 */
public class HBaseAPIOps {
    private Connection connection;
    private  Admin admin;
    @Before
    public void setUp() throws Exception {
        Configuration conf = HBaseConfiguration.create();
        connection = ConnectionFactory.createConnection(conf);
        admin = connection.getAdmin();
    }

    /*
        list 'default:t.*'
        TABLE
        t1
        t2
     */
    @Test
    public void testList() throws IOException {
        TableName[] tblNames = admin.listTableNames("default:t.*");
        for (TableName tblName : tblNames) {
            System.out.println(tblName.getNamespaceAsString() + ":" + tblName.getNameAsString());
        }
    }

    @Test
    public void testCreate() throws IOException {
        HTableDescriptor desc = new HTableDescriptor(TableName.valueOf("t3"));
        HColumnDescriptor family = new HColumnDescriptor("cf");
        desc.addFamily(family);
        admin.createTable(desc);
    }

    @Test
    public void testAddRecord() throws IOException {
        Table t3 = connection.getTable(TableName.valueOf("t3"));
        byte[] cf = "cf".getBytes();
        byte[] nameBytes = "name".getBytes();
        byte[] ageBytes = "age".getBytes();
        List<Put> puts = new ArrayList<Put>();
        /*Put put1 = new Put("1".getBytes());
        put1.addColumn(cf, nameBytes, "xiaofazeng".getBytes());
        put1.addColumn(cf, ageBytes, "13".getBytes());
        puts.add(put1);
        Put put2 = new Put("2".getBytes());
        put2.addColumn(cf, nameBytes, "xiaoshihao".getBytes());
        put2.addColumn(cf, ageBytes, "15".getBytes());*/
//        puts.add(put2);

        for (int i = 1000; i <= 10000; i++) {
            Put put = new Put((i + "").getBytes());
            put.addColumn(cf, nameBytes, ("xiaohuihui" + i).getBytes());
            put.addColumn(cf, ageBytes, ("" + (i % 99 + 1)).getBytes());
            puts.add(put);
        }
        t3.put(puts);
        t3.close();
    }

    @Test
    public void testGetRecord() throws IOException {
        Table table = connection.getTable(TableName.valueOf("t3"));

        List<Get> gets = Arrays.asList(
                new Get("1".getBytes()),
                new Get("2".getBytes()).addColumn("cf".getBytes(), "name".getBytes())
        );
        Result[] results = table.get(gets);
        for (Result result : results) {
            CellScanner cs = result.cellScanner();
            while(cs.advance()) {
                System.out.println("=======================================================");
                Cell cell = cs.current();
                String value = new String(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength());
                String cf = new String(cell.getFamilyArray(), cell.getFamilyOffset(), cell.getFamilyLength());
                String qualifier = new String(cell.getQualifierArray(), cell.getQualifierOffset(), cell.getQualifierLength());
                String rk = new String(cell.getRowArray(), cell.getRowOffset(), cell.getRowLength());
                long timestamp = cell.getTimestamp();
                System.out.println(rk + "\t" + cf + ":" + qualifier + "\t" + timestamp + "\t" + value);

                System.out.println("cell.getValueArray() == cell.getFamilyArray()? " + (cell.getValueArray() == cell.getFamilyArray()));
                System.out.println("cell.getValueArray() == cell.getQualifierArray()? " + (cell.getValueArray() == cell.getQualifierArray()));
                System.out.println("cell.getValueArray() == cell.getRowArray()? " + (cell.getValueArray() == cell.getRowArray()));
                System.out.println("------------------------------------------------------");
                int rowOffset = cell.getRowOffset();
                short rowLength = cell.getRowLength();

                int fOffset = cell.getFamilyOffset();
                byte fLength = cell.getFamilyLength();

                int qOffset = cell.getQualifierOffset();
                int qLength = cell.getQualifierLength();

                int vOffset = cell.getValueOffset();
                int vLength = cell.getValueLength();

                byte typeByte = cell.getTypeByte();
                System.out.println("rowOffset: " + rowOffset + ", rowLength: " + rowLength);
                System.out.println("fOffset: " + fOffset + ", fLength: " + fLength);
                System.out.println("qOffset: " + qOffset + ", qLength: " + qLength);
                System.out.println("vOffset: " + vOffset + ", vLength: " + vLength);

                System.out.println("typeByte: " + typeByte);
            }
        }
        table.close();
    }

    @Test
    public void testScan() throws IOException {
        Table table = connection.getTable(TableName.valueOf("t3"));
        Scan scan = new Scan();
        ResultScanner resultScanner = table.getScanner(scan);
       /* for (Result result : resultScanner) {
            String name = new String(result.getValue("cf".getBytes(), "name".getBytes()));
            int age = Integer.valueOf(new String(result.getValue("cf".getBytes(), "age".getBytes())));
            String rowKey = new String(result.getRow());
            System.out.println(rowKey + "\t" + "cf:name-->" + name + ", cf:age-->" + age);
        }*/
        resultScanner.forEach(result -> {
            String name = new String(result.getValue("cf".getBytes(), "name".getBytes()));
            int age = Integer.valueOf(new String(result.getValue("cf".getBytes(), "age".getBytes())));
            String rowKey = new String(result.getRow());
            System.out.println(rowKey + "\t" + "cf:name-->" + name + ", cf:age-->" + age);
        });
        table.close();
    }

    /**
     * 条件查询
     * 其实说白了就是sql中的where条件,给hbase程序添加过滤器
     * @throws IOException
     */
    @Test
    public void testQueryByCondtion() throws IOException {
        Table table = connection.getTable(TableName.valueOf("t3"));
        Scan scan = new Scan();
        Filter filter1 = new SingleColumnValueFilter("cf".getBytes(),
                "age".getBytes(),
                CompareFilter.CompareOp.GREATER_OR_EQUAL,
                "13".getBytes());
        Filter filter2 = new SingleColumnValueFilter("cf".getBytes(),
                "age".getBytes(),
                CompareFilter.CompareOp.LESS_OR_EQUAL,
                "18".getBytes());
        FilterList filterList = new FilterList();
        filterList.addFilter(filter1);
        filterList.addFilter(filter2);
        scan.setFilter(filterList);
        ResultScanner resultScanner = table.getScanner(scan);
        resultScanner.forEach(result -> {
            String name = new String(result.getValue("cf".getBytes(), "name".getBytes()));
            int age = Integer.valueOf(new String(result.getValue("cf".getBytes(), "age".getBytes())));
            String rowKey = new String(result.getRow());
            System.out.println(rowKey + "\t" + "cf:name-->" + name + ", cf:age-->" + age);
        });
        table.close();
    }
    @After
    public void cleanUp() throws IOException {
        admin.close();
        connection.close();
    }
}

HBase相关maven依赖

<properties>
  <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
  <hive-api.version>2.1.0</hive-api.version>
  <hadoop-api.version>2.6.4</hadoop-api.version>
  <hadoop-core.version>1.2.1</hadoop-core.version>
  <hbase-version>1.1.5</hbase-version>
</properties>

<dependencies>
  <dependency>
    <groupId>junit</groupId>
    <artifactId>junit</artifactId>
    <version>4.12</version>
  </dependency>
  <!-- HBase的maven依赖-->
  <dependency>
    <groupId>org.apache.hbase</groupId>
    <artifactId>hbase-client</artifactId>
    <version>${hbase-version}</version>
  </dependency>
  <dependency>
    <groupId>org.apache.hbase</groupId>
    <artifactId>hbase-server</artifactId>
    <version>${hbase-version}</version>
  </dependency>
  <dependency>
    <groupId>org.apache.hive</groupId>
    <artifactId>hive-hbase-handler</artifactId>
    <version>${hive-api.version}</version>
  </dependency>
</dependencies>
<build>
  <plugins>
    <!-- compiler插件, 设定JDK版本 -->
    <plugin>
      <groupId>org.apache.maven.plugins</groupId>
      <artifactId>maven-compiler-plugin</artifactId>
      <version>2.3.2</version>
      <configuration>
        <encoding>UTF-8</encoding>
        <source>1.8</source>
        <target>1.8</target>
        <showWarnings>true</showWarnings>
      </configuration>
    </plugin>
    <plugin>
      <artifactId>maven-assembly-plugin</artifactId>
      <configuration>
        <descriptorRefs>
          <descriptorRef>jar-with-dependencies</descriptorRef>
        </descriptorRefs>
        <archive>
          <manifest>
            <mainClass>com.uplooking.bigdata.hbase.HBase2HDFSOps</mainClass>
          </manifest>
        </archive>
      </configuration>
      <executions>
        <execution>
          <id>make-assembly</id>
          <phase>package</phase>
          <goals>
            <goal>single</goal>
          </goals>
        </execution>
      </executions>
    </plugin>
  </plugins>
</build>
赞(0) 打赏
未经允许不得转载:竹影清风阁 » HBase笔记整理(一)
分享到

大佬们的评论 抢沙发

全新“一站式”建站,高质量、高售后的一条龙服务

微信 抖音 支付宝 百度 头条 快手全平台打通信息流

橙子建站.极速智能建站8折购买虚拟主机

觉得文章有用就打赏一下文章作者

非常感谢你的打赏,我们将继续给力更多优质内容,让我们一起创建更加美好的网络世界!

支付宝扫一扫

微信扫一扫

登录

找回密码

注册